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Abstract. A new model is proposed for the study of porous media and complex fluids using
morphological measures to describe homogeneous spatial domains of the constituents. Under
rather natural assumptions a general expression for the Hamiltonian can be given extending
the model of Widom and Rowlinson for penetrable spheres. The Hamiltonian includes energy
contributions related to the volume, surface area, mean curvature, and the Euler characteristic
of the configuration generated by overlapping sets of arbitrary shapes. Phase diagrams of the
model are calculated and discussed. In particular, we find that the Euler characteristic in the
Hamiltonian stabilizes a highly connected bicontinuous structure, resembling the middle phase
in oil–water microemulsions.

1. Introduction

A characteristic feature of complex fluids and porous media is homogeneous spatial
domains of phases on a mesoscopic scale [1]. For instance, microemulsions exhibit a
bicontinuous structure of homogeneous oil and water phases stabilized by amphiphilic
surfactants assembled on the oil–water interface. The thermodynamics and bulk properties
of such composite materials depend often on the morphology of its constituents, i.e., on
the spatial structure of the homogeneous domains. Therefore, a statistical theory should
include geometrical as well as topological descriptors to characterize the size, shape and
connectivity of the aggregating mesophases in such media [2].

In this paper we focus on the morphological aspects of two-component media by
employing Minkowski functionals, known from integral geometry [3, 4], as suitable
descriptors of spatial patterns. In ad-dimensional space, these functionals constitute a
distinguished family ofd + 1 morphological measures which share the common features
of being additive, motion-invariant and continuous. Ind = 3 they are related with
familiar measures: covered volume, surface area, integral mean curvature and the Euler
characteristic. For completeness we collect together in section 2 some expressions from
integral geometry which are required to formulate our model which is introduced in section
3. Our approach is an extension of the widely studied Widom–Rowlinson (WR) model of
continuum fluids [5] and may be outlined as follows.

(i) Each configuration of component (I) is assumed to be the union of mutually penetrable
convex sets (‘grains’) embedded in the host component (II). The form of the grains is
otherwise arbitrary; they may be balls, flat discs, thin sticks etc.

(ii) The energy of a configuration is assumed to be a morphological measure, i.e., an
additive, motion-invariant and continuous functional of the position and orientation of the
grains. Thus the Hamiltonian of our model is a linear combination of Minkowski functionals
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on the configuration space of the grains and depends in particular on the integral mean
curvature and Euler characteristic of the homogeneous domains.

(iii) The partition function is defined as an integral over the Euclidean motions, i.e.,
translations and rotations of the penetrable grains, weighted by the Boltzmann factor.

The WR model only accounts for the volume covered by spherical grains and shows a
liquid–vapour transition. A mean-field approximation is applied to study the modifications
of the phase transition caused by the surface area and curvature terms. We focus primarily
on effects due to the Euler characteristicX, which is related to the integral Gaussian
curvature of the interface between the mesophases and has the attributes of a topological
order parameter; configurations withX > 0 consist typically of isolated grain clusters
dispersed in the host component, whereas multiply connected aggregates of grains yield
X < 0. We find that ford = 3 the Euler term in the Hamiltonian induces an additional
continuous phase transition and atriple point. One of the three coexisting fluid phases shows
a negative Euler characteristic which indicates a highly connected bicontinuous structure,
resembling the middle phase in oil–water microemulsions where the surfactants saturate the
oil–water interface.

2. Minkowski functionals

The aim of this section is the morphological characterization of random structures typical
for the structure of mesoscopic phases. We consider a two-component medium filling a cube
� with volume V = Ld . Component (I) is a collection of penetrable grains represented
by compact, i.e., closed and bounded, convex setsKi ⊂ Ed , i = 1, . . . , N . Thus, a
configuration is given byKN = ∪N

i=1Ki . The complement�\KN constitutes component
(II), i.e., the region in space which is not covered by one of the setsKi . To avoid finite-size
effects we assume periodic boundary conditions on∂�. For an arbitrary setK the Euler
characteristicX can now be defined byX(K) := 1 if K 6= ∅ is convex, andX(K) := 0 if
K = ∅ is the empty set. For unions of convex setsK, K ′ the Euler characteristic is given
by the additivity relation

X(K ∪ K ′) = X(K) + X(K ′) − X(K ∩ K ′). (1)

Since the intersection of two convex sets is convex, one obtainsX for an arbitrary
configurationKN by repeated application of the additivity relation (1). The functional
X is motion-invariant,X(gKN) = X(KN), wheregKN denotes the action of translations
and rotations onKN , and coincides with the Euler characteristic of algebraic topology when
the latter is restricted to finite unions of convex compact sets. Since a single pointx ∈ Ed

is a convex set we can define a characteristic function ofKN by IKN (x) := X(KN ∩ x),
so that the volume covered byKN is W0(K

N) := ∫
IKN (x) dµ(x). Here dµ(x) denotes

the motion-invariant volume element inEd . This relation motivates the definitions of the
Minkowski functionals

Wα(KN) =
∫

X(KN ∩ Eα) dµ(Eα) α = 0, . . . , d − 1 (2)

andWd(K
N) = ωdX(KN) with ωd = πd/2/0(1+d/2), whereEα is anα-dimensional plane

in Ed and dµ(Eα) denotes its motion-invariant kinematical density [3, 4]. It is convenient
to normalize the density dµ(Eα) so that for ad-dimensional ballBd

r with radius r the
Minkowski functionals areWα(Bd

r ) = ωdr
d−α. These functionals are familiar geometric

quantities in disguise. Ford = 3 we have, for instance,W0 = V, W1 = A/3, W2 = C/3, and
W3 = (4π/3)X with the areaA and integral mean curvatureC of the surface exposed by a
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coverage with volumeV and Euler characteristicX. Obviously the Minkowski functionals
Wα inherit the main features from the Euler characteristic; in particular they are

• additive : Wα(K ∪ K ′) = Wα(K) + Wα(K ′) − Wα(K ∩ K ′)
• motion-invariant: Wα(gK) = Wα(K)

• conditionally continuous.
(3)

Intuitively, ‘continuity’ means that an approximation of a convex body as a sequence of
polyhedraKn also yields an approximation ofWα(K) asWα(Kn). This is relevant for the
approximation of real configurations as unions of convex sets. The additivity relation is
a common feature of thermodynamic potentials, e.g., the free energy of two mesoscopic
domains of a system is often assumed to be the sum of the free energies of each domain.

The subsequent construction of our model rests on Hadwiger’s theorem [3, 4] which
states that the family of thed + 1 Minkowski functionals iscompletein the following
sense: if8 is an additive, motion-invariant and continuous functional over the class of
finite unions of convex sets, then it must be of the form8(KN) = ∑d

α=0 cαWα(KN) with
suitable coefficientscα ∈ R independent ofKN . Thus, the Minkowski functionals are
essentially the only additive and motion-invariant measures of unions of convex sets.

3. The model

In order to set up a phenomenological model for the statistical morphology of a Gibbsian
ensemble of configurationsKN , it is natural to adopt the properties (3) as criteria for the
choice of an energyH(KN). Then, Hadwiger’s theorem forcesH to take the form

H(KN) =
d∑

α=0

εα

wα

Wα

( N⋃
i=1

Ki

)
(4)

with wα := Wα(K). For simplicity, the grains are assumed to be congruent bodies. This is
the most general expression of an Hamiltonian obeying the morphological constraints (3).
The configurational partition function is taken to be

Z(T , V, N) = 1

N !3Nd

∫
exp

(
−βH

( N⋃
i=1

Ki

)) N∏
j=1

dKj . (5)

The integral denotes averages over the motions of the grains with dK being the invariant
Haar measure on the group of motion normalized byV = ∫

dK. The length3 is a scale of
resolution for the translational degrees of freedom of the grains. Apart from their convexity,
the size and shape of the grains are not restricted and ‘improper’ bodies (e.g. sticks and
discs inE3) are not excluded; aδ-dimensional convex setA with δ 6 d hasWα(A) = 0
for α 6 d − δ − 1.

For penetrable spheresKi = Bd
r (xi) and the choiceεα = 0 for 1 6 α 6 d we recover the

WR modelH(KN) = (ε0/v)W0(x1, . . . , xN), whereW0(x1, . . . , xN) is the volume covered
by balls centred at the pointsx1, . . . , xN andv = W0(B

d
r ).

With the area and curvature measuresWα, 1 6 α 6 d, included inH, equations (4)
and (5) establish a model for random interfaces formed by the boundaries∂KN , with the
surface tensionε1 and curvature moduliε2, . . . , εd .

Since the Minkowski functionals are well defined also for polyhedral bodies, there is
a natural lattice version of our model which preserves its morphological features [2, 6].
Settingε2 = ε3 = 0 one arrives, of course, at a conventional lattice gas model with nearest-
neighbour interaction only.
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Because of the proliferation of multibody interactions an exact evaluation of the partition
function (5) ford > 2 appears to be unmanageable. Therefore, we look for an approximation
which should keep the geometrical and topological aspects of the model intact. For this
purpose we follow reference [5] by keeping only the first two terms in a high-temperature
expansion of the free energy:

f (ρ, T ) := lim
N,V →∞

1

N
βF(T , V, N) = − lim

N,V →∞
1

N
logZ = log(ρ33/w0) − 1 + β

ρ
〈H〉.

(6)

The mean value〈H〉 = ∑
α εα〈Wα〉/wα is obtained from the averages of the Minkowski

functionals over an ensemble of randomly and independently distributed grains within the
cube�. In the large-volume limit,N, V → ∞, N/V = n, the averagesW̄α := 〈Wα〉/N
are known exactly [7] and are given by

W̄0 = v

ρ
(1 − e−ρ) W̄2 = c

3

(
1 − π2

32

a2

cv
ρ

)
e−ρ

W̄1 = a

3
e−ρ W̄3 = 4π

3
χ̄ = 4π

3

(
1 − 1

4π

ac

v
ρ + π

384

a3

v2
ρ2

)
e−ρ

(7)

for d = 3 (considered exclusively from now on). Herev, a and c denote volume, area
and mean curvature of a single grain,ρ = nv the density, and̄χ = 〈X〉/N the mean Euler
characteristic.

Figure 1. The phase diagram for penetrable spheres in three dimensions withε0 = 1, ε1 = 0,
ε2 = 0.4, and ε3 = 0.83. The middle phase at〈W0〉/V ≈ 0.75 is stabilized by the Euler
characteristic in the Hamiltonian (4), i.e., highly connected configurations get a large Boltzmann
factor. The temperaturekBTtr = 0.066 of the triple line can tend to zero yielding two separated
two-phase regions with a phase at medium densities even atT = 0.
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We now look for phase transitions signalled by the occurrence of critical points. Within
the present approximation, the values ofρc andTc are found by solving∂ρp = 0, ∂2

ρp = 0,
and ∂3

ρp|ρc,Tc
> 0 with the pressurepv = kBTρ2 ∂ρf . For a generic set of parameters in

the free energy, these equations yield a fourth-order polynomial equation for the possible
values of the critical densityρc. Consequently, we expect to find in general two critical
points. The choiceεα = 0, α > 1, leads back to the original Widom–Rowlinson model,
having a single critical point atρc = vnc = 1, kBTc = ε0/e and χ̄(ρc) ≈ −0.39. We note
that these values are independent of the grain shape.

In the case whereε0 = ε2 = ε3 = 0, andε1 > 0 the configurational energy is determined
by the exposed area with surface tensionε1 which may be viewed as a continuum analogue
of Peierls contours of an Ising lattice model. There is a single critical pointρc = 2 + √

2,
kBTc = ε1ρc(ρc − 2)e−ρc with χ̄(ρc) ≈ 0.05.

Our main result is the existence of a second critical point and a three-phase coexistence
for a nonvanishing termε3 6= 0, i.e., if the Hamiltonian contains a term proportional to the
Euler characteristicX of the configuration. A typical phase diagram for penetrable spheres
is shown in figure 1 with the critical pointsρ(1)

c = 0.27, kBT (1)
c = 1.04 andρ(2)

c = 3.72,
kBT (2)

c = 0.79. The middle phase is characterized by a negative mean Euler characteristic
χ̄ < 0 indicating a highly connected bicontinuous structure between the densities of the
critical points. This resembles the experimentally observed phase behaviour and spatial
structure of a middle-phase microemulsion.

In this paper we propose a new model for complex fluids using morphological measures
to describe homogeneous spatial domains generated by penetrable grains. The study of the
structure and physical properties of the various phases by renormalization group techniques
and Monte Carlo simulations as well as further applications on porous media is work in
progress.
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